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One of the most general cases of integrability of the Euler equations is that of Hess [I]. 
Sretenskii [3 and 31 generalized this result for the case of a gyrostat, and, taking the Euler 
angles as the variables, found that the angles of precession and natation are elliptic innc- 

tions of time. He also obtained a linear second-order differential equation with biperiodic 
coefficients for determining the angle of characteristic rotation. 

We investigate this problem in the special coordinate system proposed by Kharlamov [4 
and s]. This simplifies our investigation considerably and enables us to reduce the problem 
to a simpler linesr second-order differential equation. A case where this equation is integra- 
ble in elementary functions is indicated; the geometric picture of motion of a body in this 
case is described. 

1. As was shown by Kharlamov [6], the conditions of existence of the Sretenskii eolu- 
tion and the fourth integral of the problem expressed in the special coordinate system are 

a, = at = a*, h, = (*I 1 a*)% &=O, b,=O; z=ri 

The equations and integrals of motion are 

dy / dt = (an + 6,y)z - a, z (n + h) - YJ 

dz t’ dt = - (an + by) fy + &,I + &,y + b) fn + %I + Y~I’ 

‘h rfi w + by) + y vm + a,y) + n,q - vr = E 
b + WV + (Y + &I VI + ZQJ = k fi.13 

vg + VI2 -I- v*’ = 1 

For b, = 0 we have the Lagrange case, so that we assnme from now on that b, # 0. Let 
us introduce the dimensionless variables y ‘, I’, T, setting 

Y + Al = v-i&Y’, 2 = I/F&‘, t=zJfT$ 
We also set 

an - b,h, 
d’s 

- a, (a + W h % 

V-x * 
C’~2--- 

a* I k’=k + 
( ) 

(c-3 

&= =--@n-wlf 
2r ’ e’ = 

( ) 
-+ “*(a+&) 

Eqa. { 1.1) can now be rewritten es 

Y * = 2 (df y) - % 2’ = -_y (d’ + Y) + y1 (1.3) 

Y2 + 9 - cv = ch, ev + ?lyl + zv2 = k 

vz + vg + Y$ = 1 0.4) 
For convenience of notation we omit the prime in Eqs. (1.3) and (1.4). The dot indicates 
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differentiation with respect to the dimensionless time 7. 

Let us considerthe ranges of the parameters involved in the problem. From (1.2) we see 

that d, k, h, e vary over the infinite range (- m , w). Expressing the components of the 

gyration tensor b t, a* in terms of’the inertia ten’sor and making use of the inequalities rela- 

ting the moments of inertia, we obtain a restriction on C. Setting A 1 1 > A,, > Aa3, we ob- 
tain 

c= *2 V(& - Ass) / All, 

and since A,, - A;3 ,< A,,, 

21. 

the range of the parameter c turns out to be the segment [- 2, 

2. Multiplying the first equation of (1.3) by y and the second by z and then adding them 

together, we obtain 

‘/s (Y2 + ZS)’ = vtz - vpy (2.1) 

From (1.4) we obtain 

2 
VI’ + v2” = 1 - ( Y2 + z2 h 

C 19 yv1+ zvz=k--e 
( 

Y2f z2 
7 

_-h 

1 

Substituting these values and (2.1) into the identity, we obtain 

(y” + zs) (VIZ + VZZ) - (yv1+- zv2)2 = (YV2 - ‘M2 

and 

(v) =-((~“+a?) [I- (F -li)z]_[k+rh_e!+‘]l)“z 
Multiplying the second equation of (1.3) by y and subtracting from it the first equation 

multiplied by I, we arrive at the equation 

YZ’ - ZY’ = -(Y2 + z2) (Y + 4 + yv, + zvz 

or 

yz’ - zy’ = - (y2 + z2) (Y + d + +) + k + eh 

Let us introduce the polar coordinates y = p cos c$, z = p sin q5. We then obtain the 

following system of differential equations for determining p and c$: 

pp’ = - )/pa [I - (p”/ C - h)2] - [k + eh - p2e / cl2 (2.2) 

p2’p’ = -p’ (p cos cp f d + e / c) + k + ek 

The dependence of p on q5 is defined by Eq. 

dcp p2(pcosW+d+e/c)-k---h 
-= 
dp p I/p” [I - (p2 / c - h)“] - [k + eh - (pse /c)]x 

(2.3) 

The substitution y = tg (d/2) transforms Eq. (2.3) into the Riccati equation 

dY [k + eh - pa (d + e / c) + ps] y* + k + ek - pa (d + e / c) - ps 
--- 
dp - 2p I/p2 [I - (pa / c - h)x] - [k + eh - pxe / c]x 

Setting 

‘du 2p v/p” (I- (p2 / c - h)s] - [k + eh- p2e/clz 
Y=-- u ] k + eh - P’ (d + e / 4 + P*I 

in the above equation, we obtain a linear second-order differential equation whose coef fi- 
cients are polynomials in p, 

Pa (p) = Ik -I- eh - p* (d + e / c) -I- ps12 [k + ek - pa (d + e / c) - $1 

10 (P) = --4p/c” {PO - 2 (d -I- e / c)p* + [(2hc - e’) (d $ e / c) $ 4 (k + eh)]ps + 

+ c’li - ha + 2 (e / c) (k + eh)]ps - 3 (2hc - e2) (k Jr eh)p4 - 2c2 (k ‘+ eh)*#’ + 

+ c’ (k + ek) [(k + ek) (a - 3 e / c) - 2 (i - hs)] + cs (k:+ eh)*} 
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Pll (p) = 4pa [k + eh - pa (d + e/ c) + paI {pz 11 -(p% / C-WI - lk -I- eh - P’e / ~1~) 

Setting 

d-l-e/c=O, k+eh=O (2.4) 

in Eq. (2.3). we render the latter integrable. We have 

p= vAsin6+ B, A = Jfcz + Ifpet - cezh, B = l/S (2hc - ea) (2.5) 

6 = + [In I tl3 (‘hcp + ‘/44 I + nl (2.6) 
Here n is an integration constant. We note that as qS varies in the range (- n/2, w/2), 6 

varies in the range (- m , m). 

3. In order to obtain the geometric picture of motion we must know both the mobile and 
the stationary hodographs. The angular velocity of the body in the chosen mobile coordinate 
system can be expressed in terms of the gyration tensor in the following way: 

q = on + b,y, 02 = b,n + a* y, os = a,z 

Let us convert to dimensionless variables, 

Y.9 r’, Oi’ (Oi = a*l/ r/u+‘) 

and set m’= &E (on - b 1 h,)/a*. This yields 

0, = m + ‘1~ cy, o2 = Y, 03 = z (3.1) 

We have omitted the prime for convenience of notation. Under conditions (2.5) system 
(3.1) becomes 

q = ‘/a (e + CY), 0.2 = y, 03 = 3 (3.2) 

From (3.2) we see that the mobile hodograph lies in the plane o = yI (e + cw ); the pro- 
jection of the mobile hodograph on the plane wt = 0 is curve (2.5). Let us investfgate this 

curve. 
From the condition that p is real we infer the need for distinguishing the following 

cases: 
1”. hc > 0, ha > 1, es < 2c (h - )/Ii3 - 1) 

2.’ hc >, 0, ha < 1, r= < 2hc 

3”. hc > 0, ha < 1, ea > 2hc 

4”. hc < 0, ha ( 1 

(3.3) 

Case lo will be considered specially in Section 6. Let us investigate the remaining 
cases of (3.3). 

1) We begin by considering the projection of the mobile hodograph in the case where the 

coordinate’p does not vanish for sny value of the polar angle q5. The parameters c, e, h are 

here subject to the restrictions of Case lo of (3.3). 

The projection of the mobile hodograph is here symmetric with respect to the third coor- 

dinate axis, since p(d) = p (a - 4). From (2.5) we find that 

JfA--Bpd?A+B 

i.e. that the curve lies in a ring with its center at the origin. 
The maximum value ofrp is attained when sin 6 = 1; the minimum value corresponds to 

sin 6 = - 1. The values of the polar angle 4 are here given by 

qt* = & 2 arc tg exp (-n + au (1 + l/4)) - %_n, 1 = 0, rf 1, f 2, . . . (3.4) 

cp*t = * 2 arc tg exp (-n + nc (1 - Ilp)) - l/%n (3.5) 
respectively. 

If 
cplo = f 2 arc tg exp (-n + l/r ncl) - l/r n (3.6) 

we have 
sill6=0, p= vz 

The maximum points, minimum points, and points (3.6) of the right side of the curve (i.e. 
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with the plus sign in front of arc tg inExpressions (3.4)- (3.6)) are ordered as follows: 

.‘. < (P”, < 9t* < ‘p$ < ‘PI, <%O< 00. <cplO< ‘PO’ < V., < tp”r<... 

The distances between these points diminish as 4 approaches &n/2, becoming infinite- 
ly small in the neighborhood frr/2. This means that there is an infinity of these points in 
the neighborhood frr/2. The position of points (3.4)-(3.6) depends on the values of the 
parameters c and R. The sign of &,” coincides with the sign of n; [doI increases with in- 
creasing InI, but remains smaller than n/2. The parameter c characterizes the rate with 
which points (3.4)-(3.6) tend to *n/2; the smaller the e, the slower the approach of these 
points to *n/2. 

Let us take #o* as the initial point and trace the course of curve (2.5). The point now 
lies on @e outer ring boundary. The coordinate p diminishes as 4 increases, reaching the 
vaiue dB for # = 4 to; when # = 4 + 

t 
the curve touches the inner circle, after which p be- 

gins to increase; for # = q$t + curve 2.5) again touches the outer circle. The cycle is then 
repeated. The behavior of the curve is similar with decreasing # (Fig, La). 

Fig. 1 

2) In Cases 2q 3q 4o of (3.3) the coordinate shes for some 4, and the projection 
of the mobile hodograph lies inside the disk pl \/A + B with its center at the origin. 

When 8 = 60 = arc sin (- B/A), curve (2.5) passes through a zero point which is singu- 
lar for the given curve. In order to investigate the behavior of the curve in the neighborhood 
of this point, let us consider the time dependence of (2.5) as given by the formulas 

p’ = - co5 6, cp’ = --p cos q (3.7) 

The polar coordinates of a point in this case have the following significance: the coordi- 
nate p can be either positive or negative, and the polar an gle # varies from - n/2 to rr/2. 

Let us take #o* as the initial value of the polar angle and trace the course of curve (2.5) 
as the time T increases from 0. The coordinate p has a maximum at the initial instant; the 
curve touches the circle p = m. Here d, *= -tfA + 3 cos 40*, p ‘= 0, and at the next 
instant p begins to diminish with decreasing 4. For 

cpo,-r = 2 arc tg exp (‘12 coo - n) - i/s z (3.8) 
where p = 0, the curve passes through the origin, touching the ray r#~ = 
p’< 0, which means that p becomes negative, and, as we see from (3.7 
ase. When 4= I$~*, p’= 0, function p reaches its minimum value 
touches the circle p = v/ A + B at this point), and p increases with further increases in time. 

For 
‘po,r = 2 arc tg exp P/% c (2~ - 6,) - n] - l/a n (3.9) 

curve (2.5) again passes through the zero point, touching the ray 4 = (fto, t. The coordinate 
p then becomes positive and q$ begins to decrease. Curve (2.5) finally reaches the initial 
point when 
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x-e, 
7=T= 

ii 

de 

)/Asin6+ B 

The projection of the mobile hodograph is a closed curve symmetric to the origin, where 
it has a double point. If the parameters have been chosen in such a way that c$u* = 0, curve 

(2.5) is symmetric with respect to the coordinate axes y and 1. 

The position of the curve varies depending on n: the larger the Iii, the larger the inclina- 

tion of the curve relative to the y-axis and the smaller the central angle to which the curve 

is confined, The sign of the angle of inclination is the same as the sign of n. 
Case 2O of curve (2.5) (Fig. lb) differs fromthe same curve in Cases so and 4O (Fig. Ic) 

in that it assumes the values c&O and 4% * It‘docs not assume these values in Cases so . 
and 4q since here #*’ < $lo,_t and 4p> Qo,t . 

4. We can construct the stationary hodograph by means of Kharlamov’s kinematic equa- 
tions f43, 

a< (c) = 01 (U) Yl (a) + 6’2 (Wz (U) + 03 (Uh (U) 

tip2 (U) = 01’ (U) + 0~’ (U) + 6333 (U) - (I)<’ (U) 

Vl(5) va (5) v3 (4 

wpz (U) g = 01 (6) 6)~ (G) 03 (4 

doI / dcr don / da do3 f da 
Taking 4 as the independent variable cr in these eguatione, we obtain 

(4.1) 

y=$(-epcoscp* tlsincpcos6) (4.4) 

Here p is defined by Eq. (2.5). The dependence of <5 on 6 can be found from (2.6). Tht 
sign in (4.4) must be determined from the initial conditions. 

Eqs. (4.1) and (4.2) define the meridian of the surface of revolution on which the station- 
ary hodograph lies. It is evident from Eqs. (4.1)-(4.4) that concomitant replacement of c, o, 
hby-c,-e,- 6 doss not alter the shape of the meridian and of curve (2.5), and that the 
chauges in the angle u then proceed in the opposite direction. If we set - e instead of G in 
(4.1)-(4.4) the shape of the stationary hodograph does not change provided we also set - cos 
c$ instead of cos 4, This means that the portion of the stationary hodograph which corres- 
ponds to the right half of curve (2.5) (COB 4, 0) corresponds to the left half of the curve 
when we replace G by - e. 

This implies that need only be considered in cases (3.3) for c _O, e > 0. 
1) Let us consider Case lo for c > 0, h > 1, e 2 < 2c (h - ti h 2 - 1). The meridian line is 

defined by Eqs. (4.1) and (4.2). The shape of the curve is shown in Fig. la. As Ir$[ -P n/2 
the meridian tends to the circular arc 

oQe + (% + c / e)* = e-* (~8 + i/4 e’ - bee’) (4.5) 

For o 
f 

we obtain the expression 0~ = - se @2/c + A), whence we see that circle (4.5) lies 
entire y in the iower half-plane cOr;< 0). 

From (4.6) we find that d a/d6 IS positive everywhere except in the ranges & < 6-C &*, 
where d a[& < 0 and &l-C $$=(I + 4nL) < & *. Tke values of &I, & + can be obtained 

from Eq. 

eAe co@ 6 + cp* (2 A sin 6 - 8~~) = 0 (4.6) 
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We note that the lengths of the intervals Cpsl, &*I tends to zero as 6 increases to m . 

For sufficiently large 6 (we neglect terms of the order sch (c+3/3 - n)) Formula (4.3) 

becomes 

From this we find that 6 tends tom as fl + (~1. The increase in the angle a as 6 

varies from 2nl to 2n(l+ I) tends to the constant value a,, , 

Fig. 3s shows the meridian for c = 1.5, B = 2, e = 0.5, n = 1 and the circular arc which 

the msidian curve approaches as 6 + m. We see from the figure that the meridian line very 

quickly approaches the limiting circle; for these values of the parameters the points of the 
meri .dia.u are already less than 0.01 away from the circle for 6 > 4~. 

(0 ” 

The stationary hodograph appears in Fig.. 3s. 
2) Let OS considar the stationary hodograph when p can vanish (Cases 2O, 3’, 4O of 

(3.3)). 
The meridian is a closed curve whose self-intersection point corresponds to the double 

point of the mdrile hodograph. In Case 2O of (3.3) the meridian line has self-intersection 

points distinct from the latter. Fig. 26 shows the meridian of the stationary hodograph for 

c = 0.8, h = 0.5, e = 0.6, n = I. In Cases 3O and 4° of (3.3) this singular point is the sole 

self-intersection point of the meridina curve. The shape of the meridian for c = 1.3, h = - 

- 0.6, e = 1, n = I appears in Fig. 2~. 

In this case da/d@,< 0 in the range &o < 8 < &,*; &,, 4 l are the smallest roots of 
Eq. (4.6). We must bear in mind here that the coordinate p can be negative. Let 6 = &,, 

&* for 7 = Tat, ?j *). Then r*l< TI”< it, where ~10 are the instants at which p reaches its 

minimum value -me Thus, as the time 7 incrsases, u increases except in the ranges 

(7,~ ) ~1’) in which the angle u decreases. In the pariod ‘I’ in which the variable point of 
the mobile hodograph traverses the entire hodograph and returns to the initial point, the 

angle u squires the incrament Q . If a, # 0, then ) al 
h 

increases without limit as 7 -+ DO. 

The stationary hodographs fort e first (Fig. 3b) and second (Fig. 3c) cases considered 
in this Section were constructed assuming that d, = #Jo*, a = 0 for 7 = 0. Figs. 3 b and 3c 
show one portion of the stationary hodograph corresponding to the change in time from 0 to 
T . The next part of the stationary hodograph results from the preceding part if we rotate the 

latter by the angle Ct., . 

5. We can obtain the picture of motion by rotling the mobile axoid over the stationary 

one. This requires knowledge of the depmdenas of 46 and 6 on the time T, 
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We see from this that 4 and 6 decrease with time. The stationary hodogeph of the prob- 

lem has already bean investigated. The mobile hodogreph results when we shift curve (2.5) 

by the amount X in the positive direction along the y-axis and then project it onto the plane 
a1 = (c +.co~,)f2 parallel to the x-axis. 

I? 

Fig. 3 

We choose the initial instant in such e way that 4- 4o* and the minus sign applies in 

Expression (4.4). The positions of the axoids at some instant for the cases considered are 

shown in Fig. 3. The arrows indicate the direction in which the point of contact of the mo- 

bile and stationary hodographa. The corresponding hodograph points must coincide during 

motion. The body execates precessional motion about the vertical axis: if ho and u t are 
commensurate with 2n, then the motion of the body is periodic in Cases 29 3O, 4O of (3.3); 

in Case lo the motion of the body tends to periodicity as 7 + 00. 

6. Let us consider the case hc > 0, hz > 1, e2 = 2c (h - \/rhc21--ij. Here A = 0 and p = 
= const = 0, i.e. curve (2.5) is a circle of radius fi. The angle 4 varies according to 

the law 

cp = f 2 arc tg exp (-z 1/B f n) - ‘/a 3t 

where the sign and the constant n are chosen from the initial conditions. It is clear that 

++- n/2 asT+=. 

The equations of the stationary hodograph are 

0; = ‘la (B / c - h) (c v/Bcos q - e) - eh 

0~2 = B + ‘/* (e -b c -r/Fcos cp)’ - OZa (6.1) 

The value of m must be determined from the initial conditions. 
The meridian of the surface of revolution on which the stationary hodograph lies is the 

straight line 

From(6.1)wefindthetcop-rOand~+-wesd+- n/2. For this reason the stationary 

hodograph is a curve of finite length which winds on the vertical axis sn infinite number of 

times. 

Fig. 4 shows the position of the exoids at some instant. The arrows indicate the direc- 
tion of subsequent m&xi. Moreover, c$ = 0 and u = 0 at the initial instant’7 = 0, i.e. m = 
= n = 0, end the plus sign is taken in front of the expression for 4. 

As T + 00 the body tends to uniform rotation with the angular velocity 0 = 4ccB/(4c2 - 
- c4) about the z-axis which is oriented vertically in stationary space. 

In conclusion we note the following. 
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1. 

2. 

3. 

d 

5. 

6. 

bs 
Fig. 4 

1. If we set h= A, = A, = 0, then (1.1) yield the cq- 
nations and integrala in the Hess case. The case where 
Eq. (2.3) are integrable under conditions (2.4) becomes 
the familiar case of integrability pointed out by Hess 
under the condition that the constant sum of the areas is 
7A?r0. 

2. System (2.2) is also integrable in elementary 
functions in the case where Eq 

has two equal positive roots. 
The author is grateful to P.V. Kharlamov for his 

guidance in the present study. 
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